quarta-feira, 11 de março de 2009

Recipe for Disaster: The Formula That Killed Wall Street


By Felix Salmon Email 02.23.09
In the mid-'80s, Wall Street turned to the quants—brainy financial engineers—to invent new ways to boost profits. Their methods for minting money worked brilliantly... until one of them devastated the global economy. 
Photo: Jim Krantz/Gallery Stock

A year ago, it was hardly unthinkable that a math wizard like David X. Li might someday earn a Nobel Prize. After all, financial economists—even Wall Street quants—have received the Nobel in economics before, and Li's work on measuring risk has had more impact, more quickly, than previous Nobel Prize-winning contributions to the field. Today, though, as dazed bankers, politicians, regulators, and investors survey the wreckage of the biggest financial meltdown since the Great Depression, Li is probably thankful he still has a job in finance at all. Not that his achievement should be dismissed. He took a notoriously tough nut—determining correlation, or how seemingly disparate events are related—and cracked it wide open with a simple and elegant mathematical formula, one that would become ubiquitous in finance worldwide.

For five years, Li's formula, known as a Gaussian copula function, looked like an unambiguously positive breakthrough, a piece of financial technology that allowed hugely complex risks to be modeled with more ease and accuracy than ever before. With his brilliant spark of mathematical legerdemain, Li made it possible for traders to sell vast quantities of new securities, expanding financial markets to unimaginable levels.

His method was adopted by everybody from bond investors and Wall Street banks to ratings agencies and regulators. And it became so deeply entrenched—and was making people so much money—that warnings about its limitations were largely ignored.

Then the model fell apart. Cracks started appearing early on, when financial markets began behaving in ways that users of Li's formula hadn't expected. The cracks became full-fledged canyons in 2008—when ruptures in the financial system's foundation swallowed up trillions of dollars and put the survival of the global banking system in serious peril.

David X. Li, it's safe to say, won't be getting that Nobel anytime soon. One result of the collapse has been the end of financial economics as something to be celebrated rather than feared. And Li's Gaussian copula formula will go down in history as instrumental in causing the unfathomable losses that brought the world financial system to its knees.

How could one formula pack such a devastating punch? The answer lies in the bond market, the multitrillion-dollar system that allows pension funds, insurance companies, and hedge funds to lend trillions of dollars to companies, countries, and home buyers.

A bond, of course, is just an IOU, a promise to pay back money with interest by certain dates. If a company—say, IBM—borrows money by issuing a bond, investors will look very closely over its accounts to make sure it has the wherewithal to repay them. The higher the perceived risk—and there's always some risk—the higher the interest rate the bond must carry.

Bond investors are very comfortable with the concept of probability. If there's a 1 percent chance of default but they get an extra two percentage points in interest, they're ahead of the game overall—like a casino, which is happy to lose big sums every so often in return for profits most of the time.

Bond investors also invest in pools of hundreds or even thousands of mortgages. The potential sums involved are staggering: Americans now owe more than $11 trillion on their homes. But mortgage pools are messier than most bonds. There's no guaranteed interest rate, since the amount of money homeowners collectively pay back every month is a function of how many have refinanced and how many have defaulted. There's certainly no fixed maturity date: Money shows up in irregular chunks as people pay down their mortgages at unpredictable times—for instance, when they decide to sell their house. And most problematic, there's no easy way to assign a single probability to the chance of default.

Wall Street solved many of these problems through a process called tranching, which divides a pool and allows for the creation of safe bonds with a risk-free triple-A credit rating. Investors in the first tranche, or slice, are first in line to be paid off. Those next in line might get only a double-A credit rating on their tranche of bonds but will be able to charge a higher interest rate for bearing the slightly higher chance of default. And so on.

"...correlation is charlatanism" 
Photo: AP photo/Richard Drew

The reason that ratings agencies and investors felt so safe with the triple-A tranches was that they believed there was no way hundreds of homeowners would all default on their loans at the same time. One person might lose his job, another might fall ill. But those are individual calamities that don't affect the mortgage pool much as a whole: Everybody else is still making their payments on time.

But not all calamities are individual, and tranching still hadn't solved all the problems of mortgage-pool risk. Some things, like falling house prices, affect a large number of people at once. If home values in your neighborhood decline and you lose some of your equity, there's a good chance your neighbors will lose theirs as well. If, as a result, you default on your mortgage, there's a higher probability they will default, too. That's called correlation—the degree to which one variable moves in line with another—and measuring it is an important part of determining how risky mortgage bonds are.

Investors like risk, as long as they can price it. What they hate is uncertainty—not knowing how big the risk is. As a result, bond investors and mortgage lenders desperately want to be able to measure, model, and price correlation. Before quantitative models came along, the only time investors were comfortable putting their money in mortgage pools was when there was no risk whatsoever—in other words, when the bonds were guaranteed implicitly by the federal government through Fannie Mae or Freddie Mac.

Yet during the '90s, as global markets expanded, there were trillions of new dollars waiting to be put to use lending to borrowers around the world—not just mortgage seekers but also corporations and car buyers and anybody running a balance on their credit card—if only investors could put a number on the correlations between them. The problem is excruciatingly hard, especially when you're talking about thousands of moving parts. Whoever solved it would earn the eternal gratitude of Wall Street and quite possibly the attention of the Nobel committee as well.

To understand the mathematics of correlation better, consider something simple, like a kid in an elementary school: Let's call her Alice. The probability that her parents will get divorced this year is about 5 percent, the risk of her getting head lice is about 5 percent, the chance of her seeing a teacher slip on a banana peel is about 5 percent, and the likelihood of her winning the class spelling bee is about 5 percent. If investors were trading securities based on the chances of those things happening only to Alice, they would all trade at more or less the same price.

But something important happens when we start looking at two kids rather than one—not just Alice but also the girl she sits next to, Britney. If Britney's parents get divorced, what are the chances that Alice's parents will get divorced, too? Still about 5 percent: The correlation there is close to zero. But if Britney gets head lice, the chance that Alice will get head lice is much higher, about 50 percent—which means the correlation is probably up in the 0.5 range. If Britney sees a teacher slip on a banana peel, what is the chance that Alice will see it, too? Very high indeed, since they sit next to each other: It could be as much as 95 percent, which means the correlation is close to 1. And if Britney wins the class spelling bee, the chance of Alice winning it is zero, which means the correlation is negative: -1.

If investors were trading securities based on the chances of these things happening to both Alice andBritney, the prices would be all over the place, because the correlations vary so much.

But it's a very inexact science. Just measuring those initial 5 percent probabilities involves collecting lots of disparate data points and subjecting them to all manner of statistical and error analysis. Trying to assess the conditional probabilities—the chance that Alice will get head lice if Britney gets head lice—is an order of magnitude harder, since those data points are much rarer. As a result of the scarcity of historical data, the errors there are likely to be much greater.

In the world of mortgages, it's harder still. What is the chance that any given home will decline in value? You can look at the past history of housing prices to give you an idea, but surely the nation's macroeconomic situation also plays an important role. And what is the chance that if a home in one state falls in value, a similar home in another state will fall in value as well?


Here's what killed your 401(k)   David X. Li's Gaussian copula function as first published in 2000. Investors exploited it as a quick—and fatally flawed—way to assess risk. A shorter version appears on this month's cover of Wired. 

Probability

Specifically, this is a joint default probability—the likelihood that any two members of the pool (A and B) will both default. It's what investors are looking for, and the rest of the formula provides the answer.

Survival times

The amount of time between now and when A and B can be expected to default. Li took the idea from a concept in actuarial science that charts what happens to someone's life expectancy when their spouse dies.

Equality

A dangerously precise concept, since it leaves no room for error. Clean equations help both quants and their managers forget that the real world contains a surprising amount of uncertainty, fuzziness, and precariousness.

Copula

This couples (hence the Latinate term copula) the individual probabilities associated with A and B to come up with a single number. Errors here massively increase the risk of the whole equation blowing up.

Distribution functions

The probabilities of how long A and B are likely to survive. Since these are not certainties, they can be dangerous: Small miscalculations may leave you facing much more risk than the formula indicates.

Gamma

The all-powerful correlation parameter, which reduces correlation to a single constant—something that should be highly improbable, if not impossible. This is the magic number that made Li's copula function irresistible.



Enter Li, a star mathematician who grew up in rural China in the 1960s. He excelled in school and eventually got a master's degree in economics from Nankai University before leaving the country to get an MBA from Laval University in Quebec. That was followed by two more degrees: a master's in actuarial science and a PhD in statistics, both from Ontario's University of Waterloo. In 1997 he landed at Canadian Imperial Bank of Commerce, where his financial career began in earnest; he later moved to Barclays Capital and by 2004 was charged with rebuilding its quantitative analytics team.

Li's trajectory is typical of the quant era, which began in the mid-1980s. Academia could never compete with the enormous salaries that banks and hedge funds were offering. At the same time, legions of math and physics PhDs were required to create, price, and arbitrage Wall Street's ever more complex investment structures.

In 2000, while working at JPMorgan Chase, Li published a paper in The Journal of Fixed Incometitled "On Default Correlation: A Copula Function Approach." (In statistics, a copula is used to couple the behavior of two or more variables.) Using some relatively simple math—by Wall Street standards, anyway—Li came up with an ingenious way to model default correlation without even looking at historical default data. Instead, he used market data about the prices of instruments known as credit default swaps.

If you're an investor, you have a choice these days: You can either lend directly to borrowers or sell investors credit default swaps, insurance against those same borrowers defaulting. Either way, you get a regular income stream—interest payments or insurance payments—and either way, if the borrower defaults, you lose a lot of money. The returns on both strategies are nearly identical, but because an unlimited number of credit default swaps can be sold against each borrower, the supply of swaps isn't constrained the way the supply of bonds is, so the CDS market managed to grow extremely rapidly. Though credit default swaps were relatively new when Li's paper came out, they soon became a bigger and more liquid market than the bonds on which they were based.

When the price of a credit default swap goes up, that indicates that default risk has risen. Li's breakthrough was that instead of waiting to assemble enough historical data about actual defaults, which are rare in the real world, he used historical prices from the CDS market. It's hard to build a historical model to predict Alice's or Britney's behavior, but anybody could see whether the price of credit default swaps on Britney tended to move in the same direction as that on Alice. If it did, then there was a strong correlation between Alice's and Britney's default risks, as priced by the market. Li wrote a model that used price rather than real-world default data as a shortcut (making an implicit assumption that financial markets in general, and CDS markets in particular, can price default risk correctly).

It was a brilliant simplification of an intractable problem. And Li didn't just radically dumb down the difficulty of working out correlations; he decided not to even bother trying to map and calculate all the nearly infinite relationships between the various loans that made up a pool. What happens when the number of pool members increases or when you mix negative correlations with positive ones? Never mind all that, he said. The only thing that matters is the final correlation number—one clean, simple, all-sufficient figure that sums up everything.

The effect on the securitization market was electric. Armed with Li's formula, Wall Street's quants saw a new world of possibilities. And the first thing they did was start creating a huge number of brand-new triple-A securities. Using Li's copula approach meant that ratings agencies like Moody's—or anybody wanting to model the risk of a tranche—no longer needed to puzzle over the underlying securities. All they needed was that correlation number, and out would come a rating telling them how safe or risky the tranche was.

As a result, just about anything could be bundled and turned into a triple-A bond—corporate bonds, bank loans, mortgage-backed securities, whatever you liked. The consequent pools were often known as collateralized debt obligations, or CDOs. You could tranche that pool and create a triple-A security even if none of the components were themselves triple-A. You could even take lower-rated tranches of other CDOs, put them in a pool, and tranche them—an instrument known as a CDO-squared, which at that point was so far removed from any actual underlying bond or loan or mortgage that no one really had a clue what it included. But it didn't matter. All you needed was Li's copula function.

The CDS and CDO markets grew together, feeding on each other. At the end of 2001, there was $920 billion in credit default swaps outstanding. By the end of 2007, that number had skyrocketed to more than $62 trillion. The CDO market, which stood at $275 billion in 2000, grew to $4.7 trillion by 2006.

At the heart of it all was Li's formula. When you talk to market participants, they use words likebeautifulsimple, and, most commonly, tractable. It could be applied anywhere, for anything, and was quickly adopted not only by banks packaging new bonds but also by traders and hedge funds dreaming up complex trades between those bonds.

"The corporate CDO world relied almost exclusively on this copula-based correlation model," saysDarrell Duffie, a Stanford University finance professor who served on Moody's Academic Advisory Research Committee. The Gaussian copula soon became such a universally accepted part of the world's financial vocabulary that brokers started quoting prices for bond tranches based on their correlations. "Correlation trading has spread through the psyche of the financial markets like a highly infectious thought virus," wrote derivatives guru Janet Tavakoli in 2006.

The damage was foreseeable and, in fact, foreseen. In 1998, before Li had even invented his copula function, Paul Wilmott wrote that "the correlations between financial quantities are notoriously unstable." Wilmott, a quantitative-finance consultant and lecturer, argued that no theory should be built on such unpredictable parameters. And he wasn't alone. During the boom years, everybody could reel off reasons why the Gaussian copula function wasn't perfect. Li's approach made no allowance for unpredictability: It assumed that correlation was a constant rather than something mercurial. Investment banks would regularly phone Stanford's Duffie and ask him to come in and talk to them about exactly what Li's copula was. Every time, he would warn them that it was not suitable for use in risk management or valuation.

David X. Li 
Illustration: David A. Johnson

In hindsight, ignoring those warnings looks foolhardy. But at the time, it was easy. Banks dismissed them, partly because the managers empowered to apply the brakes didn't understand the arguments between various arms of the quant universe. Besides, they were making too much money to stop.

In finance, you can never reduce risk outright; you can only try to set up a market in which people who don't want risk sell it to those who do. But in the CDO market, people used the Gaussian copula model to convince themselves they didn't have any risk at all, when in fact they just didn't have any risk 99 percent of the time. The other 1 percent of the time they blew up. Those explosions may have been rare, but they could destroy all previous gains, and then some.

Li's copula function was used to price hundreds of billions of dollars' worth of CDOs filled with mortgages. And because the copula function used CDS prices to calculate correlation, it was forced to confine itself to looking at the period of time when those credit default swaps had been in existence: less than a decade, a period when house prices soared. Naturally, default correlations were very low in those years. But when the mortgage boom ended abruptly and home values started falling across the country, correlations soared.

Bankers securitizing mortgages knew that their models were highly sensitive to house-price appreciation. If it ever turned negative on a national scale, a lot of bonds that had been rated triple-A, or risk-free, by copula-powered computer models would blow up. But no one was willing to stop the creation of CDOs, and the big investment banks happily kept on building more, drawing their correlation data from a period when real estate only went up.

"Everyone was pinning their hopes on house prices continuing to rise," says Kai Gilkes of the credit research firm CreditSights, who spent 10 years working at ratings agencies. "When they stopped rising, pretty much everyone was caught on the wrong side, because the sensitivity to house prices was huge. And there was just no getting around it. Why didn't rating agencies build in some cushion for this sensitivity to a house-price-depreciation scenario? Because if they had, they would have never rated a single mortgage-backed CDO."

Bankers should have noted that very small changes in their underlying assumptions could result in very large changes in the correlation number. They also should have noticed that the results they were seeing were much less volatile than they should have been—which implied that the risk was being moved elsewhere. Where had the risk gone?

They didn't know, or didn't ask. One reason was that the outputs came from "black box" computer models and were hard to subject to a commonsense smell test. Another was that the quants, who should have been more aware of the copula's weaknesses, weren't the ones making the big asset-allocation decisions. Their managers, who made the actual calls, lacked the math skills to understand what the models were doing or how they worked. They could, however, understand something as simple as a single correlation number. That was the problem.

"The relationship between two assets can never be captured by a single scalar quantity," Wilmott says. For instance, consider the share prices of two sneaker manufacturers: When the market for sneakers is growing, both companies do well and the correlation between them is high. But when one company gets a lot of celebrity endorsements and starts stealing market share from the other, the stock prices diverge and the correlation between them turns negative. And when the nation morphs into a land of flip-flop-wearing couch potatoes, both companies decline and the correlation becomes positive again. It's impossible to sum up such a history in one correlation number, but CDOs were invariably sold on the premise that correlation was more of a constant than a variable.

No one knew all of this better than David X. Li: "Very few people understand the essence of the model," he told The Wall Street Journal way back in fall 2005.

"Li can't be blamed," says Gilkes of CreditSights. After all, he just invented the model. Instead, we should blame the bankers who misinterpreted it. And even then, the real danger was created not because any given trader adopted it but because every trader did. In financial markets, everybody doing the same thing is the classic recipe for a bubble and inevitable bust.

Nassim Nicholas Taleb, hedge fund manager and author of The Black Swan, is particularly harsh when it comes to the copula. "People got very excited about the Gaussian copula because of its mathematical elegance, but the thing never worked," he says. "Co-association between securities is not measurable using correlation," because past history can never prepare you for that one day when everything goes south. "Anything that relies on correlation is charlatanism."

Li has been notably absent from the current debate over the causes of the crash. In fact, he is no longer even in the US. Last year, he moved to Beijing to head up the risk-management department of China International Capital Corporation. In a recent conversation, he seemed reluctant to discuss his paper and said he couldn't talk without permission from the PR department. In response to a subsequent request, CICC's press office sent an email saying that Li was no longer doing the kind of work he did in his previous job and, therefore, would not be speaking to the media.

In the world of finance, too many quants see only the numbers before them and forget about the concrete reality the figures are supposed to represent. They think they can model just a few years' worth of data and come up with probabilities for things that may happen only once every 10,000 years. Then people invest on the basis of those probabilities, without stopping to wonder whether the numbers make any sense at all.

As Li himself said of his own model: "The most dangerous part is when people believe everything coming out of it."

— Felix Salmon (felix@felixsalmon.comwrites the Market Movers financial blog at Portfolio.com.

RICK BOOKSTABER - The Fat-Tailed Straw Man

My Time article about the quant meltdown of August, 2007 started with “Looks like Wall Street’s mad scientists have blown up the lab again.” Articles on Wall Street’s mad scientist blowing up the lab seem to come out every month in one major publication or another. The New York Times has a story along these lines today and had a similar story in January.


There is a constant theme in these articles, invariably including a quote from Nassim Taleb, that quants generally, and quantitative risk managers specifically, missed the boat by thinking, despite all evidence to the contrary, that security returns can be modeled by a Normal distribution.


This is a straw man argument. It is an attack on something that no one believes.


Is there anyone well trained in quantitative methods working on Wall Street who does not know that security returns have fat tails? It is discussed in most every investment text book. Fat tails are apparent – even if we ignore periods of crisis – in daily return series. And historically, every year there is some market or other that has suffered a ten standard deviation move of the "where did that come from" variety. I am firmly in the camp of those who understand there are unanticipatable risks; as far back as an article I co-authored in 1985, I have argued for the need to recognize that we face uncertainty from the unforeseeable. To get an idea of how far back the appreciation of this sort of risk goes in economic thought, consider the fact that it is sometimes referred to as Knightian uncertainty.


Is there any risk manager who does not understand that VaR will not capture the risk of market crises and regime changes? The conventional VaR methods are based on historical data, and so will only be an accurate view of risk if tomorrow is drawn from the same population as the sample it uses. VaR is not perfect, it cannot do everything. But if we understand its flaws – and every professional risk manager does – then it is a useful guide for day-to-day market risk. If you want to add fat tails, fine. But as I will explain below, that is not the solution.


So, then, why is there so much currency given to a criticism of something that no one believes in the first place?


It is because quant methods sometimes fail. We can quibble with whether ‘sometimes’ should be replaced with ‘often’ or ‘frequently’ or ‘every now and again’, but we all know they are not perfect. We are not, after all, talking about physics, about timeless and universal laws of the universe when we deal with securities. Weird stuff happens. And the place where the imperfection is most telling is in risk management.


When the risk manager misses the equivalent of a force five hurricane, we ask what is wrong with his methods. By definition, what he missed was a ten or twenty standard deviation event, so we tell him he ignored fat tails. There you have it, you failed because you did not incorporate fat tails. This is tautological. If I miss a large risk – which will occur on occasion even if I am fully competent; that is why they are called risks – I will have failed to account for a fat tailed event. I can tell you that ahead of time. I can tell you now – as can everyone in risk management – that I will miss something. If after the fact you want to castigate me for not incorporating sufficiently fat tailed events, let the flogging begin.


I remember a cartoon that showed a man sitting behind a desk with a name plate that read ‘risk manager’. The man sitting in front of the desk said, “Be careful? That’s all you can tell me, is to be careful?” Observing that extreme events can occur in the markets is about as useful as saying “be careful”. We all know they will occur. And once they have occurred, we will all kick ourselves and our risk managers and our models, and ask “how could we have missed that?”


The flaw comes in the way we answer that question, a question that can be stated more analytically as “what are the dynamics of the market that we failed to incorporate.” If we answer by throwing our hands into the air and saying, “well, who knows, I guess that was one of them there ten standard deviation events”, or “what do you expect; that’s fat tails for you”, we will be in the same place when the next crisis arrives. If instead we build our models with fatter and fatter tailed distributions, so that after the event we can say, “see, what did I tell you, there was one of those fat tailed events that I postulated in my model”, or “see, I told you to be careful”, does that count for progress?


So, to recap, we all know that there are fat tails; it doesn’t do any good to state the mantra over and over again that securities do not follow a Normal distribution. Really, we all get it. We should be constructive in trying to move risk management beyond the point of simply noting that there are fat tails, beyond admonitions like “hey, you know, shit happens, so be careful.” And that means understanding the dynamics that create the fat tails, in particular, that lead to market crisis and unexpected linkages between markets.


What are these dynamics?


One of them, which I have written about repeatedly, is the liquidity crisis cycle. An exogenous shock occurs in a highly leveraged market, and the resulting forced selling leads to a cascading cycle downward in prices. This then propagates to other markets as those who need to liquidate find the market that is under pressure no longer can support their liquidity needs. Thus there is contagion based not on economic linkages, but based on who is under pressure and what else they are holding. This cycle evolves unrelated to historical relationships, out of the reach of VaR-types of models, but that does not mean it is beyond analysis.


Granted it is not easy to trace the risk of these potential liquidity crisis cycles. To do so with accuracy, we need to know the leverage and positions of the market participants. In my previous post, "Mapping the Market Genome", I argued that this should be the role of a market regulator. But even absent that level of detail, perhaps we can get some information indirectly from looking at market flows.


No doubt there are other dynamics that lead to the fat tailed events currently frustrating our efforts to manage risk in the face of market crises. We need to move beyond the fat-tail critiques and the ‘be careful’ mantra to discover and analyze them.

RICK BOOKSTABER

Gerenciamento de risco (Quants) transformado em ganância.



Modelos Matemáticos e WallStreet. NyTimes

Vou postar vários artigos interessantes a respeito deste tema. Qual o efeito dos "quants" na crise de crédito, liquidez e confiança americana?

NEW THEORIES After spending 20 years in the study of physics, Emanuel Derman applied his thinking to stock options.

Published: March 9, 2009

Emanuel Derman expected to feel a letdown when he left particle physics for a job on Wall Street in 1985.

 Podcast: Science Times

Further Reading

The Black Swan: The Impact of the Highly Improbable, by Nassim Nicholas Taleb (Random House, 2007)

My Life as a Quant: Reflections on Physics and Finance, by Emanuel Derman (John Wiley & Sons, 2004)

When Genius Failed: The Rise and Fall of Long-Term Capital Management, by Roger Lowenstein (Random House, 2000)

Traders, Guns & Money: Knowns and Unknowns in the Dazzling World of Derivatives, by Satyajit Das (FT Press, 2006)

Title Essay: Physicists on Wall Street and Other Essays on Science and Society, by Jeremy Bernstein (Springer, 2008)

RSS Feed

Nicole Bengiveno/The New York Times

"Nobody ever took these models to be playing chess with God." — Emanuel Derman

James Estrin/The New York Times

FIGURES "There is a positive role for engineers and scientists. It's not remote pointy-headed wizards plotting the destruction of the world." — Eric Weinstein, a physicist at a hedge fund.

CJ Gunther for The New York Times

"In an insane world, the person who is rational has the problem. Money is as addictive as cocaine." — Andrew Lo, a professor of financial engineering.

Thomas Gallane

"If we want to manage risk, we need a model, we need to be able to show we make a lot of money from it." — Satyajit Das, a former trader.

Carlos Javier Ortiz for The New York Times

"Because the math is really complicated people assume it must be right." — Nigel Goldenfeld, whose company sells derivatives software.

Readers' Comments

Readers shared their thoughts on this article.

After all, for almost 20 years, as a graduate student at Columbia and a postdoctoral fellow at institutions like Oxford and the University of Colorado, he had been a spear carrier in the quest to unify the forces of nature and establish the elusive and Einsteinian “theory of everything,” hobnobbing with Nobel laureates and other distinguished thinkers. How could managing money compare?

But the letdown never happened. Instead he fell in love with a corner of finance that dealt with stock options.

“Options theory is kind of deep in some way. It was very elegant; it had the quality of physics,” Dr. Derman explained recently with a tinge of wistfulness, sitting in his office at Columbia, where he is now a professor of finance and a risk management consultant with Prisma Capital Partners.

Dr. Derman, who spent 17 years at Goldman Sachs and became managing director, was a forerunner of the many physicists and other scientists who have flooded Wall Street in recent years, moving from a world in which a discrepancy of a few percentage points in a measurement can mean a Nobel Prize or unending mockery to a world in which a few percent one way can land you in jail and a few percent the other way can win you your own private Caribbean island.

They are known as “quants” because they do quantitative finance. Seduced by a vision of mathematical elegance underlying some of the messiest of human activities, they apply skills they once hoped to use to untangle string theory or the nervous system to making money.

This flood seems to be continuing, unabated by the ongoing economic collapse in this country and abroad. Last fall students filled a giant classroom at M.I.T. to overflowing for an evening workshop called “So You Want to Be a Quant.” Some quants analyze the stock market. Others churn out the computer models that analyze otherwise unmeasurable risks and profits of arcane deals, or run their own hedge funds and sift through vast universes of data for the slight disparities that can give them an edge.

Still others have opened an academic front, using complexity theory or artificial intelligence to better understand the behavior of humans in markets. In December the physics Web site arXiv.org, where physicists post their papers, added a section for papers on finance. Submissions on subjects like “the superstatistics of labor productivity” and “stochastic volatility models” have been streaming in.

Quants occupy a revealing niche in modern capitalism. They make a lot of money but not as much as the traders who tease them and treat them like geeks. Until recently they rarely made partner at places like Goldman Sachs. In some quarters they get blamed for the current breakdown — “All I can say is, beware of geeks bearing formulas,”Warren Buffett said on “The Charlie Rose Show” last fall. Even the quants tend to agree that what they do is not quite science.

As Dr. Derman put it in his book “My Life as a Quant: Reflections on Physics and Finance,” “In physics there may one day be a Theory of Everything; in finance and the social sciences, you’re lucky if there is a useable theory of anything.”

Asked to compare her work to physics, one quant, who requested anonymity because her company had not given her permission to talk to reporters, termed the market “a wild beast” that cannot be controlled, and then added: “It’s not like building a bridge. If you’re right more than half the time you’re winning the game.” There are a thousand physicists on Wall Street, she estimated, and many, she said, talk nostalgically about science. “They sold their souls to the devil,” she said, adding, “I haven’t met many quants who said they were in finance because they were in love with finance.”

The Physics of Money

Physicists began to follow the jobs from academia to Wall Street in the late 1970s, when the post-Sputnik boom in science spending had tapered off and the college teaching ranks had been filled with graduates from the 1960s. The result, as Dr. Derman said, was a pipeline with no jobs at the end. Things got even worse after the cold war ended and Congress canceled the Superconducting Supercollider, which would have been the world’s biggest particle accelerator, in 1993.

They arrived on Wall Street in the midst of a financial revolution. Among other things, galloping inflation had made finances more complicated and risky, and it required increasingly sophisticated mathematical expertise to parse even simple investments like bonds. Enter the quant.

“Bonds have a price and a stream of payments — a lot of numbers,” said Dr. Derman, whose first job was to write a computer program to calculate the prices of bond options. The first time he tried to show it off, the screen froze, but his boss was fascinated anyway by the graphical user interface, a novelty on Wall Street at the time.

Stock options, however, were where this revolution was to have its greatest, and paradigmatic, success. In the 1970s the late Fischer Black of Goldman Sachs, Myron S. Scholesof Stanford and Robert C. Merton of Harvard had figured out how to price and hedge these options in a way that seemed to guarantee profits. The so-called Black-Scholes model has been the quants’ gold standard ever since.

In the old days, Dr. Derman explained, if you thought a stock was going to go up, an option was a good deal. But with Black-Scholes, it doesn’t matter where the stock is going. Assuming that the price of the stock fluctuates randomly from day to day, the model provides a prescription for you to still win by buying and selling the underlying stock and its bonds.

“If you’re a trading desk,” Dr. Derman explained, “you don’t care if it goes up or down; you still have a recipe.”

The Black-Scholes equation resembles the kinds of differential equations physicists use to represent heat diffusion and other random processes in nature. Except, instead of molecules or atoms bouncing around randomly, it is the price of the underlying stock.

The price of a stock option, Dr. Derman explained, can be interpreted as a prediction by the market about how much bounce, or volatility, stock prices will have in the future.

But it gets more complicated than that. For example, markets are not perfectly efficient — prices do not always adjust to right level and people are not perfectly rational. Indeed, Dr. Derman said, the idea of a “right level” is “a bit of a fiction.” As a result, prices do not fluctuate according to Brownian motion. Rather, he said: “Markets tend to drift upward or cascade down. You get slow rises and dramatic falls.”

One consequence of this is something called the “volatility smile,” in which options that benefit from market drops cost more than options that benefit from market rises.

Another consequence is that when you need financial models the most — on days like Black Monday in 1987 when the Dow dropped 20 percent — they might break down. The risks of relying on simple models are heightened by investors’ desire to increase their leverage by playing with borrowed money. In that case one bad bet can doom a hedge fund. Dr. Merton and Dr. Scholes won the Nobel in economic science in 1997 for the stock options model. Only a year later Long Term Capital Management, a highly leveraged hedge fund whose directors included the two Nobelists, collapsed and had to be bailed out to the tune of $3.65 billion by a group of banks.

Afterward, a Merrill Lynch memorandum noted that the financial models “may provide a greater sense of security than warranted; therefore reliance on these models should be limited.”

That was a lesson apparently not learned.

Respect for Nerds

Given the state of the world, you might ask whether quants have any idea at all what they are doing.

Comparing quants to the scientists who had built the atomic bomb and therefore had a duty to warn the world of its dangers, a group of Wall Streeters and academics, led by Mike Brown, a former chairman of Nasdaq and chief financial officer of Microsoft, published a critique of modern finance on the Web site Edge.org last fall calling on scientists to reinvent economics.

Lee Smolin, a physicist at the Perimeter Institute for Theoretical Physics in Waterloo, Ontario, who was one of the authors, said, “What is amazing to me as I learn about this is how flimsy was the theoretical basis of the claims that derivatives and other complex financial instruments reduced risk, when their use in fact brought on instabilities.”

But it is not so easy to get new ideas into the economic literature, many quants complain. J. Doyne Farmer, a physicist and professor at the Santa Fe Institute, and the founder and former chief scientist of the Prediction Company, said he was shocked when he started reading finance literature at how backward it was, comparing it to Middle-Ages theories of fire. “They were talking about phlogiston — not the right metaphor,” Dr. Farmer said.

One of the most outspoken critics is Nassim Nicholas Taleb, a former trader and now a professor at New York University. He got a rock-star reception at the World Economic Forum in Davos this winter. In his best-selling book “The Black Swan” (Random House, 2007), Dr. Taleb, who made a fortune trading currency on Black Monday, argues that finance and history are dominated by rare and unpredictable events.

“Every trader will tell you that every risk manager is a fraud,” he said, and options traders used to get along fine before Black-Scholes. “We never had any respect for nerds.”

Dr. Taleb has waged war against one element of modern economics in particular: the assumption that price fluctuations follow the familiar bell curve that describes, say, IQ scores or heights in a population, with a mean change and increasingly rare chances of larger or smaller ones, according to so-called Gaussian statistics named for the German mathematician Friedrich Gauss.

But many systems in nature, and finance, appear to be better described by the fractal statistics popularized by Benoit Mandelbrot of IBM, which look the same at every scale. An example is the 80-20 rule that 20 percent of the people do 80 percent of the work, or have 80 percent of the money. Within the blessed 20 percent the same rule applies, and so on. As a result the odds of game-changing outliers like Bill Gates’s fortune or a Black Monday are actually much greater than the quant models predict, rendering quants useless or even dangerous, Dr. Taleb said.

“I think physicists should go back to the physics department and leave Wall Street alone,” he said.

When Dr. Taleb asked someone to come up and debate him at a meeting of risk managers in Boston not too long ago, all he got was silence. Recalling the moment, Dr. Taleb grumbled, “Nobody will argue with me.”

Dr. Derman, who likes to say it is the models that are simple, not the world, maintains they can be a useful guide to thinking as long as you do not confuse them with real science — an approach Dr. Taleb scorned as “schizophrenic.”

Dr. Derman said, “Nobody ever took these models as playing chess with God.”

Do some people take the models too seriously? “Not the smart people,” he said.

Quants say that they should not be blamed for the actions of traders. They say they have been in the forefront of pointing out the shortcomings OF modern economics.

“I regard quants to be the good guys,” said Eric R. Weinstein, a mathematical physicist who runs the Natron Group, a hedge fund in Manhattan. “We did try to warn people,” he said. “This is a crisis caused by business decisions. This isn’t the result of pointy-headed guys from fancy schools who didn’t understand volatility or correlation.”

Nigel Goldenfeld, a physics professor at the University of Illinois and founder of NumeriX, which sells investment software, compared the financial meltdown to the Challenger space shuttle explosion, saying it was a failure of management and communication.

Prisoners of Wall Street

By their activities, quants admit that despite their misgivings they have at least given cover to some of the wilder schemes of their bosses, allowing traders to conduct business in a quasi-scientific language and take risks they did not understand.

Dr. Goldenfeld of Illinois said that when he posted scholarly articles, some of which were critical of financial models, on his company’s Web site, salespeople told him to take them down. The argument, he explained, was that “it made our company look bad to be associating with Jeremiahs saying that the models were all wrong.”

Dr. Goldenfeld took them down. In business, he explained, unlike in science, the customers are always right.

Quants, in short, are part of the system. “They get paid, a Faustian bargain everybody makes,” said Satyajit Das, a former trader and financial consultant in Australia, who likes to refer to them as “prisoners of Wall Street.”

“What do we use models for?” Mr. Das asked rhetorically. “Making money,” he answered. “That’s not what science is about.”

The recent debacle has only increased the hunger for scientists on Wall Street, according to Andrew Lo, an M.I.T. professor of financial engineering who organized the workshop there, with a panel of veteran quants.

The problem is not that there are too many physicists on Wall Street, he said, but that there are not enough. A graduate, he told the young recruits, can make $75,000 to $250,000 a year as a quant but can also be fired if things go sour. He said an investment banker had told him that Wall Street was not looking for Ph.D.’s, but what he called “P.S.D.s — poor, smart and a deep desire to get rich.”

He ended his presentation with a joke that has been told around M.I.T. for a long time, but seemed newly relevant; “What do you call a nerd in 10 years? Boss.”

An earlier version of this article misspelled the given name of Satyajit Das.